
CS 139 Assignment 9 Spring 2020

Introduction

The point of this assignment is to expose you to the vast number of NP
complete problems—most of which are very practical problems and occur
frequently in industry—as well as give you deep experience with one of them.
In this assignment, you will be given an NP complete problem from the list
below and your task is to research the problem, understand why it is NP
complete, and create a video presentation giving the details of the problem,
why it is important, and the details of a reduction that demonstrates that it
is NP complete. Video presentations must be 5–10 minutes in length

This assignment is a group assignment in which you work in pairs and
partners will be assigned based off of similar problem interest and availability.
You must fill out the Assignment 9 Questionnaire by 8:00 AM CDT on
Thursday, April 30th listing the problems you are interested in and your
availability. If you cannot access the form, be sure to log into Google using
your Drake credentials first. Before class on Thursday, groups and problems
will be announced to you via an email.

Integrated into Slack is a video calling feature using Microsoft Teams
that allows you to make calls to your partner, share screens, and prepare the
presentation together. I recommend you use this to coordinate work on the
assignment. There are various methods for recording a video presentation
together, including Microsoft Teams, Zoom, and Blackboard Collaborate. The
video presentation submission deadline is 11:59 PM CDT on Thursday,
May 7th on the last day of class.

All videos will be made available to the entire class via Blackboard, and
an extra credit opportunity will be available for watching the videos and
filling out a short rubric evaluating the presentations.

NP Complete Problems

Traveling Salesman. This problem is about finding cheap paths for a
traveling salesman to visit every city in a graph. It demonstrates how difficult
optimal package shipping problems are.

More formally, given a fully connected directed graph G = (V,E) and a
vertex s ∈ V , an s-tour of G is a path that starts and ends at s and visits
every vertex at least once. Given a cost function c : E → Q+ that assigns a

1

https://forms.gle/deReHKubvwViwivYA
https://accounts.google.com/AccountChooser?service=lso


CS 139 Assignment 9 Spring 2020

positive rational1 cost to each edge in the graph G, we define the total c-cost
of an s-tour to be

∑
e∈T c(e) where T ⊆ E is the set of edges used in the

s-tour. The traveling salesman problem is then the language:

TSP = {〈G, c, s, d〉 | G has an s-tour with total c-cost at most d}.

Longest Path. This problem concerns finding long paths from a vertex x to
a vertex y in a graph. It is the natural opposite to the shortest path problem
which can be efficiently solved. It is definitely unintuitive why finding long
paths is so challenging but finding short paths is so easy.

More formally, we define a simple path from x to y in an undirected graph
G = (V,E) is a sequence of adjacent vertices that begins with x, ends with y,
and which no intermediate vertex appears twice. The longest path problem is
then the language:

PATHLONG = {〈G, x, y, k〉 | G contains a simple path

from x to y of length at least k}.

Set Cover. This problem encapsulates the problem of choosing a list of items
that satisfy a set of requirements. It is similar to choosing a list of classes at
Drake that satisfy all the area of interest requirements for graduation.

More formally, let U be a finite set called a universe set, and let S =
{S1, . . . , Sn} be a finite collection of sets such that Si ⊆ U for each 1 ≤ i ≤ n.
We call S a family of subsets over universe U . We say that a sub-family
C ⊆ S covers the set U if

U =
⋃
Si∈C

Si.

In other words, every element of U is contained in one of the sets Si in the sub-
family C. For example, if U = {1, 2, 3, 4} and S = {{1, 2}, {3}, {4}, {3, 4}},
then the set C = {{1, 2}, {3, 4}} covers U since the union of its subsets is
the set U . However, if C = {{3, 4}, {3}, {4}}, it does not cover U since the
elements 1 and 2 are not included in any subset of C.

The set cover problem is then the language:

SET-COVER = {〈U,S, k〉 | S has a sub-family that covers U of size k}.

Hitting Set. This problem encapsulates the problem of choosing a list of
items that each “hit” a category of some kind. For example, if your major

1We use Q+ here instead of R+ to avoid discussing finite string encodings of reals.

2



CS 139 Assignment 9 Spring 2020

requires you to take a class from each of the categories A, B, and C, then you
must choose a set of classes to take such that you take at least one class from
each category. The interesting aspect of this problem, is that some classes
might exist in multiple categories.

More formally, let U be a finite universe set, and let S be a finite family
of subsets over U . We say that a set H ⊆ U is a hitting set if every set
Si ∈ S contains at least one element of H. For example, if U = {1, 2, 3, 4}
and S = {{1}, {1, 2}, {3}, {3, 4}}, then the set H = {1, 3} is a hitting set.

The hitting set problem is then the language:

HITTING-SET = {〈U,S, k〉 | U has a hitting set of size k}.

Set Packing. This problem is concerned with the optimal allocation of
resources. For example, suppose you have a set of ingredients in your kitchen
and a set of recipes that use these ingredients. If you want to cook as many
recipe dishes as possible with what you have, you must decide how to allocate
your ingredients to recipes in the most efficient way possible.

More formally, let U be a finite universe set, and let S be a finite family
of subsets over U . We say that a sub-family C ⊆ S is pairwise-disjoint if for
each X, Y ∈ C such that X 6= Y , then X ∩ Y = ∅.

The set packing problem is then the language:

SET-PACKING = {〈U,S, k〉 | S has a pairwise-disjoint sub-family of size k}.

Partition. This problem is concerned with dividing up valuable items into
two sets that have equal value.

More formally, let S be a finite sequence of numbers (note that numbers
may appear multiple times). We say that such an S can be equally partitioned
if there is a partition of S into two parts S1 and S2 such that

∑
x∈S1

x =∑
y∈S2

y. For example, the sequence S = (3, 1, 1, 2, 2, 1) can be partitioned
into S1 = (1, 1, 1, 2) and S2 = (2, 3), so it can be equally partitioned.

The partition problem is then the language:

PARTITION = {〈S〉 | S can be equally partitioned}.

Knapsack. Earlier this year, a clerk at Lucky Candy Deli in New York went
viral for giving customers five seconds to grab anything they want in the store
for free if they could answer a simple math question. (It went viral on Tik
Tok.) The problem of packing valuable items in a bag with finite capacity is
exactly the knapsack problem.

3



CS 139 Assignment 9 Spring 2020

More formally, suppose that there is a set of items

I = {(v1, w1), (v2, w2), . . . , (vn, wn)}

where each item has value vi ∈ N and weight wi ∈ N. Given a subset of the
items C ⊆ I, define the total value of C to be the sum vC =

∑
(vi,wi)∈C vi and

the total weight of C to be the sum wC =
∑

(vi,wi)∈C wi.
The knapsack problem is then the language:

KS = {〈I, V,W 〉 | there is a subset C ⊆ I with wC ≤ W and vC ≥ V }.

In the above language, W ∈ N is called the capacity of the knapsack and
V ∈ N is the total value desired.

Bagging. At retail stores, employees try to bag items using the fewest
number of bags possible. Suppose that a customer purchases a list of items I
and each item has positive integer weight wi ∈ N. For n, c ∈ N, we say that I
can be (c, n)-bagged if the items can be partitioned into at most n bags and
the total weight of the items in each bag does not exceed c.

We can formulate the grocery bagging problem as a language.

BAG = {〈I, n, c〉 | I = (w1, w2, . . . , wk) is a list of items

that can be (c, n)-bagged}.

Graph Coloring. A coloring of an undirected graph is an assignment of
colors to its nodes so that no two adjacent nodes are assigned the same color.
The three coloring problem is then the language:

3-COLOR = {〈G〉 | G is colorable with 3 colors}.

Dominating Set. A subset D ⊆ V of the vertices of an undirected graph
G = (V,E) is called a dominating set if every other vertex in V \D is adjacent
to some node in D. The dominating set problem is the language:

DOMINATING-SET = {〈G, k〉 | G has a dominating set with k nodes}.

4


