Claim 1. Let $\sim: \mathbb{R} \times \mathbb{R} \rightarrow\{$ true, false $\}$ be the binary relation defined by

$$
a \sim b \Longleftrightarrow a-b \in \mathbb{Z}
$$

Prove or disprove: \sim is an equivalence relation.
Proof. We prove the statement is true by showing that \sim is reflexive, symmetric, and transitive.

To see that \sim is reflexive, we need to show that for each $x \in \mathbb{R}$ that $x \sim x$ holds. To show this, we let $x \in \mathbb{R}$ be an arbitrary element. Since $x-x=0 \in \mathbb{Z}$, we know that $x \sim x$, and therefore \sim is reflexive.

To see that \sim is symmetric, we need to show that if $x \sim y$, then $y \sim x$. To show this, let $x, y \in \mathbb{R}$ be arbitrary elements such that $x \sim y$. By the definition of \sim, this means that $(x-y)=n \in \mathbb{Z}$. Since n is an integer, we know that $-n=(y-x) \in \mathbb{Z}$ is also an integer. Therefore we know that $y \sim x$, and therefore \sim is symmetric.

Finally, to see that \sim is transitive, we need to show that if $x \sim y$ and $y \sim z$, then $x \sim z$ holds. To show this, we assume the hypothesis that $x, y, z \in \mathbb{R}$ such that $x \sim y$ and $y \sim z$. Since $x \sim y$, we know that $x-y=n_{1} \in \mathbb{Z}$, and since $y \sim z$ we know that $y-z=n_{2} \in \mathbb{Z}$. Then we know that

$$
x-z=x-z+(y-y)=(x-y)-(z-y)=n_{1}-n_{2} .
$$

Since n_{1} and n_{2} are integers, we know that $n_{1}-n_{2}$, and therefore $x-z$, is also an integer. By the definition of \sim this means that $x \sim z$, and therefore \sim is transitive.

Since we have shown that \sim is reflexive, symmetric, and transitive, we know that it is an equivalence relation.

Claim 2. For all sets A and B, the following holds:

$$
A \backslash B \subseteq A \cap B
$$

Proof. We prove the statement is false by providing a counterexample.
Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$ be sets. Then we can compute $A \backslash B$ and $A \cap B$ directly:

$$
\begin{aligned}
& A \backslash B=\{1,2,3\} \backslash\{3,4,5\}=\{1,2\} \\
& A \cap B=\{1,2,3\} \cap\{3,4,5\}=\{3\}
\end{aligned}
$$

Clearly the set $\{1,2\}$ is not a subset of $\{3\}$, so the sets A and B above contradict the claim.

Claim 3. For all sets A and B, the following holds:

$$
\begin{equation*}
x \notin B \Longrightarrow x \notin A \backslash(A \backslash B) \tag{1}
\end{equation*}
$$

Proof. We prove that the claim is true.
For convenience, we rewrite the statement of equation (1) into its equivalent contrapositive form:

$$
\begin{equation*}
x \in A \backslash(A \backslash B) \Longrightarrow x \in B \tag{2}
\end{equation*}
$$

which happens to be equivalent to showing that $A \backslash(A \backslash B) \subseteq B$.
To prove this, we let $x \in A \backslash(A \backslash B)$; it now suffices to show that x is also in B. We show this directly by noting that by the definition of \backslash, we know that $x \in A$ and $x \notin A \backslash B$. Similarly, since we know that $x \notin A \backslash B$, we know that one of the following must be true: (a) $x \notin A$ or (b) $x \in B$ (if both were false that would mean that $x \in A \backslash B$). Since we already know that $x \in A$, we know that (a) must be false and therefore (b) must be true. This means that $x \in B$, and therefore the statement is true.

Claim 4. Every undirected graph $G=(V, E)$ with $|V| \geq 2$ has two vertices with the same degree.

Proof. We prove the claim is true by contradiction.
Assume the claim is false. Then there must be a graph $G=(V, E)$ with $n \geq 2$ number of vertices such that every vertex $v \in V$ has a unique degree. We know that the maximum degree of any vertex is $n-1$ (when it is connected to every other vertex by an edge), and the minimum degree of any vertex is 0 (when it is connected to no other vertices). We also know that if a vertex $v \in V$ has degree $n-1$, it is impossible for a vertex $v^{\prime} \in V$ to have degree 0 , since v must be connected to every other vertex in V, including v^{\prime}.

This means that it is only possible for a graph to have $n-1$ unique degrees, either $\{0,1, \ldots, n-2\}$ or $\{1,2, \ldots, n-1\}$. However, there are n vertices in the graph G, so two of them must have the same degree - a contradiction to our assumption.

Claim 5. For all $n \in \mathbb{N}$, the following holds:

$$
n^{3}+2 n \text { is divisible by } 3
$$

Proof. We prove the claim is true by induction on n.
For the base case, consider $n=1$. Then $n^{3}+2 n=1+2=3$ is divisible by 3 , so the statement holds.

For the induction case, assume that we know that $n^{3}+2 n$ is divisible by 3 for some $n \in \mathbb{N}$. It now suffices to show that $(n+1)^{3}+2(n+1)$ is also divisible by 3. By expanding the expression, we obtain

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =\left(n^{3}+3 n^{2}+3 n+1\right)+2 n+2 \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
\end{aligned}
$$

By the induction hypothesis, we know that $\left(n^{3}+2 n\right)$ is divisible by 3 , and since the rest of the expression is a multiple of 3 , the whole expression is divisible by 3 .

