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Claim 1. Let ∼: R× R→ {true, false} be the binary relation defined by

a ∼ b ⇐⇒ a− b ∈ Z.

Prove or disprove: ∼ is an equivalence relation.

Proof. We prove the statement is true by showing that ∼ is reflexive, sym-
metric, and transitive.

To see that ∼ is reflexive, we need to show that for each x ∈ R that
x ∼ x holds. To show this, we let x ∈ R be an arbitrary element. Since
x− x = 0 ∈ Z, we know that x ∼ x, and therefore ∼ is reflexive.

To see that ∼ is symmetric, we need to show that if x ∼ y, then y ∼ x.
To show this, let x, y ∈ R be arbitrary elements such that x ∼ y. By the
definition of ∼, this means that (x− y) = n ∈ Z. Since n is an integer, we
know that −n = (y − x) ∈ Z is also an integer. Therefore we know that
y ∼ x, and therefore ∼ is symmetric.

Finally, to see that ∼ is transitive, we need to show that if x ∼ y and y ∼ z,
then x ∼ z holds. To show this, we assume the hypothesis that x, y, z ∈ R
such that x ∼ y and y ∼ z. Since x ∼ y, we know that x− y = n1 ∈ Z, and
since y ∼ z we know that y − z = n2 ∈ Z. Then we know that

x− z = x− z + (y − y) = (x− y)− (z − y) = n1 − n2.

Since n1 and n2 are integers, we know that n1 − n2, and therefore x− z, is
also an integer. By the definition of ∼ this means that x ∼ z, and therefore
∼ is transitive.

Since we have shown that ∼ is reflexive, symmetric, and transitive, we
know that it is an equivalence relation.

Claim 2. For all sets A and B, the following holds:

A \B ⊆ A ∩B

Proof. We prove the statement is false by providing a counterexample.
Let A = {1, 2, 3} and B = {3, 4, 5} be sets. Then we can compute A \B

and A ∩B directly:

A \B = {1, 2, 3} \ {3, 4, 5} = {1, 2},
A ∩B = {1, 2, 3} ∩ {3, 4, 5} = {3}.

Clearly the set {1, 2} is not a subset of {3}, so the sets A and B above
contradict the claim.
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Claim 3. For all sets A and B, the following holds:

x 6∈ B =⇒ x 6∈ A \ (A \B) (1)

Proof. We prove that the claim is true.
For convenience, we rewrite the statement of equation (1) into its equivalent

contrapositive form:

x ∈ A \ (A \B) =⇒ x ∈ B, (2)

which happens to be equivalent to showing that A \ (A \B) ⊆ B.
To prove this, we let x ∈ A \ (A \B); it now suffices to show that x is also

in B. We show this directly by noting that by the definition of \, we know
that x ∈ A and x 6∈ A \B. Similarly, since we know that x 6∈ A \B, we know
that one of the following must be true: (a) x 6∈ A or (b) x ∈ B (if both were
false that would mean that x ∈ A \B). Since we already know that x ∈ A,
we know that (a) must be false and therefore (b) must be true. This means
that x ∈ B, and therefore the statement is true.

Claim 4. Every undirected graph G = (V,E) with |V | ≥ 2 has two vertices
with the same degree.

Proof. We prove the claim is true by contradiction.
Assume the claim is false. Then there must be a graph G = (V,E) with

n ≥ 2 number of vertices such that every vertex v ∈ V has a unique degree.
We know that the maximum degree of any vertex is n−1 (when it is connected
to every other vertex by an edge), and the minimum degree of any vertex is
0 (when it is connected to no other vertices). We also know that if a vertex
v ∈ V has degree n− 1, it is impossible for a vertex v′ ∈ V to have degree 0,
since v must be connected to every other vertex in V , including v′.

This means that it is only possible for a graph to have n−1 unique degrees,
either {0, 1, . . . , n− 2} or {1, 2, . . . , n− 1}. However, there are n vertices in
the graph G, so two of them must have the same degree—a contradiction to
our assumption.

Claim 5. For all n ∈ N, the following holds:

n3 + 2n is divisible by 3
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Proof. We prove the claim is true by induction on n.
For the base case, consider n = 1. Then n3 + 2n = 1 + 2 = 3 is divisible

by 3, so the statement holds.
For the induction case, assume that we know that n3 + 2n is divisible by

3 for some n ∈ N. It now suffices to show that (n + 1)3 + 2(n + 1) is also
divisible by 3. By expanding the expression, we obtain

(n + 1)3 + 2(n + 1) = (n3 + 3n2 + 3n + 1) + 2n + 2

= (n3 + 2n) + 3(n2 + n + 1).

By the induction hypothesis, we know that (n3 + 2n) is divisible by 3, and
since the rest of the expression is a multiple of 3, the whole expression is
divisible by 3.
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