Claim 1. The following language is not regular.

$$
A=\left\{0^{n} 10^{n} \mid n \in \mathbb{N}\right\}
$$

Proof. We prove the claim is true by contradiction. Thus we begin by assuming the opposite of the claim, i.e., that A is regular. Since A is regular, the pumping lemma applies, so there exists a pumping length p for A.

Now consider the string $w=0^{p} 10^{p}$. Notice that the length of this string is $|w|=2 p+1 \geq p$, therefore the pumping lemma tells us that w can be decomposed into three parts x, y, and z such that $w=x y z$ and that the following three statements must be true:

1. $x y^{i} z \in A$ for all $i \geq 0$,
2. $|y|>0$, and
3. $|x y| \leq p$.

Since $|x y| \leq p$ and the first p symbols of $0^{p} 10^{p}$ are all 0 s , we know that both x and y consist of only 0 s to the left of the 1 in the middle. We also know that $|y|>0$ and therefore $y=0^{k}$ for some $k>0$. Finally, we also know that $x y^{2} z \in A$, and this string is

$$
x y^{2} z=x y y z=0^{p+k} 10^{p}
$$

since adding an extra y increases the number of 0 s on the left-hand side by $k>0$. However, this means that the number of 0 s on either side of the 1 are not equal and therefore $x y^{2} z$ is not in A-this is a contradiction to the pumping lemma saying that $x y^{2} z \in A$. This means our original assumption that A is regular was false, so it actually is not regular.

Claim 2. The following language is not regular

$$
B=\left\{p(x, y) \mid x, y \in\{0,1\}^{*}\right\}
$$

where $p(x, y)$ is the self-delimiting pairing function defined by

$$
p(x, y)=0^{|x|} 1 x y
$$

for all strings $x, y \in\{0,1\}^{*}$.

Proof. We prove that B is not regular using contradiction and the pumping lemma. Assume that B is regular, and let p be its pumping length. Now let $w=p\left(0^{p}, \epsilon\right)=0^{p} 10^{p}$. Since $w \in B$ and $|w|=2 p+1 \geq p$, we know the pumping lemma applies, so $w=x y z$ for some strings x, y, and z. The pumping lemma tells us that $|x y| \leq p$ and $|y|>0$, therefore we know that y consists of one or more 0 s to the left of the first 1 in $w=0^{p} 10^{p}$. Therefore the string xyyz= $0^{p+k} 10^{p}$ for some $k>0$ which is not a properly formatted self-delimited pair of strings since there are more 0 s to the left of the 1 . This contradicts the pumping lemma that says that xyyz should be in B.

Claim 3. The following language is not regular.

$$
C=\left\{0^{n} 1^{m} \mid n \geq m\right\}
$$

Proof. (by contradiction) Assume that C is regular with pumping length p and let $w=0^{p} 1^{p}$. Then the pumping lemma says that $w=x y z$ satisfying $|x y| \leq p,|y|>0$, and $x y^{0} z=x z \in C$. Therefore we know that y consists of one or more zeros on the left-hand-side and that $x z=0^{p-k} 1^{p}$ for some $k>0$. Since $p-k \nsupseteq p$, we know that $x z$ is not of the appropriate form to be in the language C, therefore it contradicts the pumping lemma. Thus, we can conclude that C is not regular.

