CS 139 // 2020-01-30
We will cover these topics in a 3, 2, 1 order
Let $\sim:\mathbb{R}\times\mathbb{R}\rightarrow\{\text{true}, \text{false}\}$ be the binary relation: $$a\sim b \iff a-b \in \mathbb{Z}.$$
$\sim:\mathbb{R}\times\mathbb{R}\rightarrow\{\text{true}, \text{false}\}$
$$a\sim b \iff a-b \in \mathbb{Z}.$$
$\sim$
$5\sim 6$
$-7.3\sim 3.3$
$\pi\sim e$
Claim: For all sets $A$ and $B$, the following holds: $$A\setminus B \subseteq A\cap B$$
$A$
$B$
$$A\setminus B \subseteq A\cap B$$
Is this claim true? Why or why not?
Claim: For all sets $A$ and $B$, the following holds: $$x\not\in B \implies x\not\in A\setminus (A\setminus B)$$
$$x\not\in B \implies x\not\in A\setminus (A\setminus B)$$
Claim: Every undirected graph $G = (V,E)$ with at least two vertices has two vertices with the same degree.
$G = (V,E)$
Due Tuesday, February 4th (before class)