CS 139 // 2020-02-04
Due Tuesday, February 11th (before class)
$P \iff Q$
$4\times 4$
$2^n\times 2^n$
$p\implies q$
$\lnot q\implies\lnot p$
Let $\sim:\mathbb{R}\times\mathbb{R}\rightarrow\{\text{true}, \text{false}\}$ be the binary relation: $$a\sim b \iff a-b \in \mathbb{Z}.$$
$\sim:\mathbb{R}\times\mathbb{R}\rightarrow\{\text{true}, \text{false}\}$
$$a\sim b \iff a-b \in \mathbb{Z}.$$
Is $\sim$ an equivalence relation? Why or why not?
$\sim$
Claim: For all sets $A$ and $B$, the following holds: $$A\setminus B \subseteq A\cap B$$
$A$
$B$
$$A\setminus B \subseteq A\cap B$$
Is this claim true? Why or why not?
Claim: For all sets $A$ and $B$, the following holds: $$x\not\in B \implies x\not\in A\setminus (A\setminus B)$$
$$x\not\in B \implies x\not\in A\setminus (A\setminus B)$$
Claim: Every undirected graph $G = (V,E)$ with at least two vertices has two vertices with the same degree.
$G = (V,E)$
Claim: For all $n\in\mathbb{N}$, the following holds: $$n^3 + 2n\text{ is divisible by 3}$$
$n\in\mathbb{N}$
$$n^3 + 2n\text{ is divisible by 3}$$
$2^n$
$n$
$f(x,y) = x\cdot y$
def mult(x, y): """Computes the product of two numbers""" return x * y
$f$
$f(n) = n^2$
$s$
$t$
$G$
$\le k$
$\Sigma$
$\Sigma = \{0,1\}$
$\Sigma = \{\texttt{a},\texttt{b},\texttt{c}, \ldots, \texttt{z}\}$
$\texttt{abba}$
$\{\texttt{a},\texttt{b}\}$
$\epsilon$
$\Sigma^\ast$
$$\{0,1\}^\ast = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots, \}$$
$x,y,z\in\mathbb{Z}_{\ge 0}$
$x+y=z$
$$\Sigma = \{0, 1, 2, \ldots, 9\}\cup \{+,=\}$$
$$\text{ADD}_2 = \{x+y=z\mid x,y,z\in\{0,\ldots,9\}^\ast\\\text{where the sum of $x$ and $y$ is $z$}\}$$
$\{0,1\}$
$\Sigma = \{\texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}\}$
$00=\texttt{a}$
$01=\texttt{b}$
$10=\texttt{c}$
$11=\texttt{d}$
$00010100$