CS 139 // 2020-02-20
$\cap$
$\cup$
$\setminus$
$A$
$B$
$$A\circ B = \{x\circ y \mid x\in A, y\in B\}$$
$\{000,1\}\circ\{\texttt{a}, \texttt{b}\texttt{c}\}$
$ = \{000\texttt{a}, 000\texttt{bc}, 1\texttt{a}, 1\texttt{bc}\}$
$A,B\subseteq\Sigma^\ast$
$A\circ B$
$A\subseteq\Sigma^\ast$
$\overline{A} = \Sigma^\ast\setminus A$
$A\cap B$
$A\cup B$
$$A^\ast = \bigcup_{n\in\mathbb{Z}_{\ge 0}} A^n$$
$A^0 = \{\epsilon\}$
$A^1 = A$
$A^k = A\circ A^{k-1}$
$$A = \{w\in\{0,1\}^\ast \mid w\text{ has an equal number of 0s and 1s}\}$$
$$B = \{w\in\{0,1\}^\ast \mid w\text{ has an equal number of 01s and 10s}\}$$
Here $A$ is not regular but $B$ is. Why?
$p$
$w\in A$
$|w|\ge p$
$w$
$w = xyz$
$xy^iz \in A$
$i \ge 0$
$|y| > 0$
$|xy| \le p$
What does this mean?
Claim: The following language is not regular $$A = \{0^n10^n \mid n\in\mathbb{N}\}$$
$$A = \{0^n10^n \mid n\in\mathbb{N}\}$$
$x,y\in\{0,1\}^\ast$
$p(x,y)$
$$p(x,y) = 0^{|x|}1xy$$
$$B = \{p(x,y) \mid x,y\in\{0,1\}^\ast\}$$
Claim: The following language is not regular $$C = \{0^n1^m \mid n \ge m\}$$
$$C = \{0^n1^m \mid n \ge m\}$$