M_A = On input w
1. Compute f(w) where f is the reduction from A to B
2. Run M_B on f(w) and output whatever it does
M_f = On input <G,k> where G = (V,E);
1. Construct G' = (V, E') by inverting the edges of G
2. Output <G',k>
V = On input <G,k,C>
1. Check if C is a subset of the vertices of G; if not, REJECT
2. For each edge {x,y} of G:
a. Check if x or y are in C; if neither are, then REJECT
3. If all edges are covered by C, then ACCEPT