CS 139 // 2020-05-07
$a,b\in\mathbb{Z}$
$a\cdot b$
$n\in\mathbb{Z}$
$n = a\cdot b$
$n\in\mathbb{N}$
$n$
$\text{P}$
$\text{NP}$
$\text{EQ}_\text{TM}$
$\text{HALT}$
$$\text{UHAMPATH} = \{\langle G, s, t\rangle \mid \text{$G$ has a simple path from $s$ to $t$}\\\text{that visits every vertex exactly once}\}$$
$G$
$\text{UHAMPATH}$
$\text{HAMPATH}$
$\text{HAMPATH}\le_p\text{UHAMPATH}$
$$\text{DOUBLE-SAT} = \{\langle \Phi\rangle \mid \text{$\Phi$ has at least two}\\\text{unique satisfying assignments }\}$$
$\text{3SAT} \le_p \text{DOUBLE-SAT}$
Prove or disprove the following statement:
Claim: $L$ is Turing recognizable if and only if $L\le_m A_\text{TM}$.
$L$
$L\le_m A_\text{TM}$
Claim: If $L$ is Turing recognizable, then so is $\overline{L}$
$\overline{L}$
$f:\{0\}^\ast\rightarrow\{1\}^\ast$
$$f(0^k) = 1^{2k}$$